
Contents

Extreme Accuracy in Symbolic Regression . 1

Michael F. Korns

Index . 31

v

Extreme Accuracy in Symbolic Regression

Michael F. Korns

Abstract Although recent advances in symbolic regression (SR) have promoted the

field into the early stages of commercial exploitation, the poor accuracy of SR is still

plaguing even the most advanced commercial packages today. Users expect to have

the correct formula returned, especially in cases with zero noise and only one basis

function with minimally complex grammar depth. Poor accuracy is a hinderence to

greater academic and industrial acceptance of SR tools.

In a previous paper, the poor accuracy of Symbolic Regression was explored, and

several classes of test formulas, which prove intractable for SR, were examined. An

understanding of why these test problems prove intractable was developed. In an-

other paper a baseline Symbolic Regression algorithm was developed with specific

techniques for optimizing embedded real numbers constants. These previous steps

have placed us in a position to make an attempt at vanquishing the SR accuracy

problem.

In this chapter we develop a complex algorithm for modern symbolic regression

which is extremely accurate for a large class of Symbolic Regression problems. The

class of problems, on which SR is extremely accurate, is described in detail. A def-

inition of extreme accuracy is provided, and an informal argument of extreme SR

accuracy is outlined in this chapter. Given the critical importance of accuracy in SR,

it is our suspicion that in the future all commercial Symbolic Regression packages

will use this algorithm or a substitute for this algorithm.

Key words: abstract expression grammars, grammar template genetic program-

ming, genetic algorithms, particle swarm, symbolic regression

Analytic Research Foundation, 98 Perea Street, Makati 1229, Manila Philippines

1

2 Michael F. Korns

1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the last

few years. There is at least one commercial package on the market for several years

http://www.rmltech.com/. There is now at least one well documented commercial

symbolic regression package available for Mathematica www.evolved-analytics.com.

There is at least one very well done open source symbolic regression package avail-

able for free download http://ccsl.mae.cornell.edu/eureqa. In addition to our own

ARC system (Korns, 2010), currently used internally for massive (million row) fi-

nancial data nonlinear regressions, there are a number of other mature symbolic re-

gression packages currently used in industry including (Smits and Kotanchek, 2004)

and (Kotanchek et al, 2007). Plus there is another commercially deployed regression

package which handles up to 50 to 10,000 input features using specialized linear

learning (McConaghy, 2011).

Yet, despite the increasing sophistication of commercial SR packages, there have

been serious issues with SR accuracy even on simple problems (Korns, 2011).

Clearly the perception of SR as a must use tool for important problems or as an

interesting heurism for shedding light on some problems, will be greatly affected

by the demonstrable accuracy of available SR algorithms and tools. The depth and

breadth of SR adoption in industry and academia will be greatest if a very high level

of accuracy can be demonstrated for SR algorithms.

In (Korns, 2012) we developed a simple, easy to implement, public domain base-

line algorithm for modern symbolic regression which is reasonably competitive with

current commercial SR packages. This algorithm was meant to be a baseline for fur-

ther public domain research on provable SR algorithm accuracy. It is called Constant

Swarm with Operator Weighted Pruning, and is inspired by recent published tech-

niques in pareto front optimization (Kotanchek et al, 2007), age layered population

structures (Hornby, 2006), age fitness pareto optimization (Schmidt and Lipson,

2010), and specialized embedded abstract constant optimization (Korns, 2010).

In this chapter we enhance the previous baseline with a complex multi-island

algorithm for modern symbolic regression which is extremely accurate for a large

class of Symbolic Regression problems. The class of problems, on which SR is ex-

tremely accurate, is described in detail. A definition of extreme accuracy is provided,

and an informal argument of extreme SR accuracy is outlined in this chapter.

Before continuing with the details of our extreme accuracy algorithm, we proceed

with a basic introduction to general nonlinear regression. Nonlinear regression is the

mathematical problem which Symbolic Regression aspires to solve. The canonical

generalization of nonlinear regression is the class of Generalized Linear Models

(GLMs) as described in Nelder and Wedderburn (1972). A GLM is a linear combi-

nation of I basis functions Bi; i = 0,1, I, a dependent variable y, and an independent

data point with M features x = <x0, x1, x2, , xM−1>: such that

• (E1) y = γ(x) = c0 + ΣciBi(x) + err

As a broad generalization, GLMs can represent any possible nonlinear formula.

However the format of the GLM makes it amenable to existing linear regression

Extreme Accuracy in Symbolic Regression 3

theory and tools since the GLM model is linear on each of the basis functions Bi.

For a given vector of dependent variables, Y, and a vector of independent data points,

X, symbolic regression will search for a set of basis functions and coefficients which

minimize err. In Koza (1992) the basis functions selected by symbolic regression

will be formulas as in the following examples:

• (E2) B0 = x3

• (E3) B1 = x1+x4

• (E4) B2 = sqrt(x2)/tan(x5/4.56)
• (E5) B3 = tanh(cos(x2*.2)*cube(x5 +abs(x1)))

If we are minimizing the normalized least squared error, NLSE (Korns, 2012),

once a suitable set of basis functions B have been selected, we can discover the

proper set of coefficients C deterministically using standard univariate or multivari-

ate regression. The value of the GLM model is that one can use standard regression

techniques and theory. Viewing the problem in this fashion, we gain an important

insight. Symbolic regression does not add anything to the standard techniques of re-

gression. The value added by symbolic regression lies in its abilities as a search tech-

nique: how quickly and how accurately can SR find an optimal set of basis functions

B. The immense size of the search space provides ample need for improved search

techniques. In basic Koza-style tree-based Genetic Programming (Koza, 1992) the

genome and the individual are the same Lisp s-expression which is usually illus-

trated as a tree. Of course the tree-view of an s-expression is a visual aid, since a

Lisp s-expression is normally a list which is a special Lisp data structure. Without

altering or restricting basic tree-based GP in any way, we can view the individuals

not as trees but instead as s-expressions such as this depth 2 binary tree s-exp: (/ (+

x2 3.45) (* x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x4 3.45) 2.0).

In basic GP, applied to symbolic regression, the non-terminal nodes are all oper-

ators (implemented as Lisp function calls), and the terminal nodes are always either

real number constants or features. The maximum depth of a GP individual is lim-

ited by the available computational resources; but, it is standard practice to limit

the maximum depth of a GP individual to some manageable limit at the start of a

symbolic regression run.

Given any selected maximum depth k, it is an easy process to construct a maxi-

mal binary tree s-expression Uk, which can be produced by the GP system without

violating the selected maximum depth limit. As long as we are reminded that each f

represents a function node while each t represents a terminal node, the construction

algorithm is simple and recursive as follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Uk): (f Uk−1 Uk−1)

The basic GP symbolic regression system (Koza, 1992) contains a set of func-

tions F, and a set of terminals T. If we let t ∈ T, and f ∈ F ∪ ξ , where ξ (a,b) =

ξ (a) = a, then any basis function produced by the basic GP system will be repre-

sented by at least one element of Uk. Adding the ξ function allows Uk to express

4 Michael F. Korns

all possible basis functions generated by the basic GP system to a depth of k. Note

to the reader, the ξ function performs the job of a pass-through function. The ξ
function allows a fixed-maximal-depth expression in Uk to express trees of varing

depth, such as might be produced from a GP system. For instance, the varying depth

GP expression x2 + (x3 - x5) = ξ (x2,0.0) + (x3 - x5) = +(ξ (x2,0.0) -(x3 x5)) which is

a fixed-maximal-depth expression in U2.

In addition to the special pass through function ξ , in our system we also make ad-

ditional slight alterations to improve coverage, reduce unwanted errors, and restrict

results from wandering into the complex number range. All unary functions, such

as cos, are extended to ignore any extra arguments so that, for all unary functions,

cos(a,b) = cos(a). The sqroot and ln functions are extended for negative arguments

so that sqroot(a) = sqroot(abs(a)) and ln(a) = ln(abs(a)).

Given this formalism of the search space, it is easy to compute the size of the

search space, and it is easy to see that the search space is huge even for rather simple

basis functions. For our use in this chapter the function set will be the following

functions: F = (+ - * / cos sin tan tanh sqroot square cube quart exp ln ξ). The

terminal set is the features x0 thru xM−1 and the real constant c, which we shall

consider to be 218 in size.

During the writing of Korns (2010, 2011, 2012), a high level regression search

language was developed called RQL. RQL was inspired by the database search

language SQL. Therefore RQL is analogous to SQL but not similar to SQL. The

algorithm included in this paper is primarily presented in RQL. A very brief, but

hopefully sufficient, description of RQL follows.

Regression Query Language RQL is a high level Symbolic Regression search

language, and consists of one or more search clauses which together make up a

symbolic regression request. Each search clause represents an independent evolu-

tionary island in which a separate symbolic regression search is performed.

• (A1) search goal where island(breeder,strategy,popsize,pool,serial)
...constraints...
...events...

It is assumed that the champions from each independent search island will be ac-

cumulated into a final list of champions from which the best champion will become

the answer to the entire search process. The search goal specifies the area to be

searched. For example, a common goal is universal(3,1,t) which searches all single

(1) regression champions from all possible basis functions of depth (3) where the

terminals are both (t) variables (containing features) or abstract constants (contain-

ing real numbers). The goal universal(3,1,t) is also known as U3(1) throughout this

chapter.

Another search goal example might be f0(v0,f1(v1,c0)) which searches for a func-

tion with two arguments where the second argument is also a function with two

argument, the second of which is a constant. The abstract function variables f0 thru

fK are meant to contain one concrete function from the set F ∪ ξ unless otherwise

constrained. The abstract feature variables v0 thru vJ are meant to contain one con-

crete feature from the set x0 thru xM−1 unless otherwise constrained. The abstract

constant variables c0 thru cL are meant to contain one real number, of size 2cbit ,

Extreme Accuracy in Symbolic Regression 5

unless otherwise constrained. The constraints, located anywhere after the where

keyword, are in the form of limitations on variable and function variable coverage

such as f0(cos,sin,tan,tanh) or v0(x0,x3,x10) or c0(3.45).

The island keyword sets up the parameters of the evolutionary search island. We

use only two breeders: pareto which implements a typical pareto front algorithm

and also understands onfinal and onscore events, and smart which implements a

focused elitist algorithm and also understands onfinal and onscore events. We use

only one population operator strategy standard which implements typical elitist

mutation and crossover operators, plus standard swarm operators for optimizing

embedded constants, see the baseline algorithm (Korns, 2012). The population size

popsize, constant pool size pool, and number of serial iterations per generation

serial vary with each search specification.

Three other constraint and event clauses may appear anywhere after the where

keyword. These are the isolate constraint clause, and the onscore and onfinal

events. Each of these will be explained, with brief descriptions and actual examples,

as we detail specific regression search requests required for the extreme accuracy

algorithm.

Incidentally any reasonable pareto front implementation, any reasonable elitist

implementation, any reasonable standard set of population operators, and any rea-

sonable set of swarm optimizers for embedded constants will work with this extreme

accuracy algorithm. The key to implementing this extreme accuracy algorithm lies

in the number of independent search island requests, and exactly what is searched

for in each independent island. Which brings us to the core issues involved in the

pursuit of extreme accuracy.

When searching for a single regression champion with one simple basis function

of depth 3 i.e. universal(3,1,t) also known as U3(1), one encounters a number of

difficult problems. Many of the simple forms covered in U3(1), such as cos(x10),

cannot be easily discovered by evolutionary methods. This is because getting close

to the champion does not necessarily convey a fitness improvement. For instance

where cos(x10) is the correct champion, it is not clear that cos(x8) cos(x9) cos(x11)

provide any fitness improvement which evolutionary search methods might exploit.

Another easily understood pair of examples can be shown where the correct cham-

pion is square(x10+3.427). Any trial champion such as cube(x10+c0) will have its

fitness improved as c0 approaches 3.427. Unfortunately this convenient fitness im-

provement does not occur when the correct champion is cos(x10+3.427) and the trial

champion is cube(x10+c0) or even cos(x10+c0).

So the obvious answer is to search universal(3,1,t) serially for every possible

value of functions, variables, and embedded constants. This is fine when the num-

ber of functions and variables are small and when the number of bits (cbit) used to

represent embedded constants is small. However Symbolic Regression is of great-

est value when the number of functions, features, and cbits is large. In our work

in this chapter we have the number of functions ‖F‖ = 15, the number of features

‖V‖ = 100, and cbit = 18. The size of universal(3,1,t) can be computed with the fol-

lowing formula ‖F‖7*(‖V‖+2cbit)8. Therefore 157*(100+218)8. = 3.82E+51 which

is larger than the estimated number of stars in our universe.

6 Michael F. Korns

Since serial search of universal(3,1,t) is not possible in reasonable time, pursuit

of extreme accuracy requires us to move on to the more complex algorithm pre-

sented in this chapter. This extreme accuracy algorithm relies on three strategies.

First, carving out the smaller subsets of universal(3,1,t) which can be shown to re-

quire serial search and demonstrating these areas are small enough to be serially

searched in practical time. Second, carving out the larger subsets of universal(3,1,t)

which are tractable for evolutionary search and demonstrating these larger areas are

responsive to evolutionary search in practical time. Third, for those remaining ar-

eas too large for serial search and too unresponsive for evolutionary search, we use

algebraic manipulations and mathematical regression equivalences to reduce these

problems spaces to equivalent spaces which can be solved.

Our core assertion in this chapter is that the algorithm will find extremely accu-

rate champions for all of the problems in U2(1) and in U1(3).

Example Test Problems

In this section we list the example test problems which we will address. All of these

test problems lie in the domain of either U2(1) or U1(3) where the function set F =

(+ - * / cos sin tan tanh sqroot square cube quart exp ln ξ), and the terminal set is

the features x0 thru xM−1 plus the constant c with cbit = 18. Our test will reference

100 features. Our core assertion is that the algorithm will find extremely accurate

champions for all of these problems and for all similar problems in practical time.

• (T1): y = 1.57 + (14.3*x3)
• (T2): y = 3.57 + (24.33/x3)
• (T3): y = 1.687 + (94.183*(x3*x2))
• (T4): y = 21.37 + (41.13*(x3 /x2))
• (T5): y = -1.57 + (2.3*((x3*x0)*x2))
• (T6): y = 9.00 + (24.983*((x3 *x0)*(x2*x4)))
• (T7): y = -71.57 + (64.3*((x3*x0)/x2))
• (T8): y = 5.127 + (21.3*((x3*x0)/(x2*x4)))
• (T9): y = 11.57 + (69.113*((x3*x0)/(x2+x4)))
• (T10): y = 206.23 + (14.2*((x3*x1)/(3.821-x4)))
• (T11): y = 0.23 + (19.2*((x3-83.519)/(93.821-x4)))
• (T12): y = 0.283 + (64.2*((x3-33.519)/(x0-x4)))
• (T13): y = -2.3 + (1.13*sin(x2))
• (T14): y = 206.23 + (14.2*(exp(cos(x4))))
• (T15): y = -12.3 + (2.13*cos(x2 *13.526))
• (T16): y = -12.3 + (2.13*tan(95.629/x2))
• (T17): y = -28.3 + (92.13*tanh(x2*x4))
• (T18): y = -222.13 + (-0.13*tanh(x2 /x4))
• (T19): y = -2.3 + (-6.13*sin(x2)*x3)
• (T20): y = -2.36 + (28.413*ln(x2)/x3)
• (T21): y = 21.234 + (30.13*cos(x2)*tan(x4))
• (T22): y = -2.3 + (41.93*cos(x2)/tan(x4))
• (T23): y = .913 + (62.13*ln(x2)/square(x4))
• (T24): y = 13.3 + (80.23*x2) + (1.13*x3)
• (T25): y = 18.163 + (95.173/x2) + (1.13/x3)

Extreme Accuracy in Symbolic Regression 7

• (T26): y = 22.3 + (62.13*x2) + (9.23*sin(x3))
• (T27): y = 93.43 + (71.13*tanh(x3)) + (41.13*sin(x3))
• (T28): y = 36.1 + (3.13*x2) + (1.13*x3) + (2.19*x0)
• (T29): y = 17.9 + (2.13*x2) + (1.99*sin(x3)) + (1.13*cos(x3))
• (T30): y = -52.183 + (9.13*tanh(x3)) + (-11.13*sin(x3)) + (14.3*ln(x3))

For the sample test problems, we will use only statistical best practices out-of-

sample testing methodology. A matrix of independent variables will be filled with

random numbers between -100 and +100. Then the model will be applied to produce

the dependent variable. These steps will create the training data (each matrix row

is a training example and each matrix column is a feature). A symbolic regression

will be run on the training data to produce a champion estimator. Next a matrix of

independent variables will be filled with random numbers between -100 and +100.

Then the model will be applied to produce the dependent variable. These steps will

create the testing data. The fitness score is the root mean squared error divided by the

standard deviation of Y, NLSE. The estimator will be evaluated against the testing

data producing the final NLSE and R-Square scores for comparison.

For the purposes of this algorithm, extremely accurate will be defined as any

champion which achieves a normalized least squares error (NLSE) of .0001 or less

on the testing data under conditions where both the training data and testing data

were constructed with zero noise.

All timings quoted in this chapter were performed on a Dell XPS L521X Intel

i7 quad core laptop with 16Gig of RAM, and 1Tb of hard drive, manufactured in

Dec 2012 (our test machine). Each test problem was trained against 10,000 training

examples with 100 features per example, and tested against 10,000 testing exam-

ples with 100 features per example. Noise was NOT introduced into any of the test

problems, so an exact answer was always theoretically possible.

2 General Search Island

The extremely accurate algorithm begins with an RQL search command which sets

up a blanket search of a user specified depth and breadth

• (S0) search universal(D,B,t) where island(pareto,standard,100,100,200)
op(ξ ,+,-,*,/,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

For our purposes herein we will set the expression depth D = 4 and the number

of basis functions B = 3. But any user specified depth and number of basis functions

can be accommodated.

Search command (S0) assumes that one has an SR system at least as capable as

the baseline algorithm in Korns (2012), a reasonably competent implementation of

pareto front breeding with onfinal and onscore event handling, a reasonably com-

petent implementation of standard population operators with mutation, crossover,

and swarm optimizers for the constant pools. The survivor population size will be

100. The constant pool size will be 100. Each generation 200 serial iterations will

8 Michael F. Korns

be made in universal(4,3,t). This island search is independent of all other search

commands in the algorithm.

Search (S0) will provide the same breadth and depth of search and will be as

accurate as any existing commercial package - depending upon the implementation

of pareto and standard. That is the good news. The bad news is that (S0) will not

be extremely accurate because of the issues already mentioned. The size of the (S0)

search space is (1515*(100+218)16)3 = 10.0E+312. So the serial search at 200 it-

erations per generation will take longer than the age of the universe to complete.

Meaning that we can’t count on serial search and evolutionary search is powerful

but not extremely accurate.

Therefore, if we wish to achieve extreme accuracy on U2(1) and U1(3), additional

search commands will have to be added to the algorithm. These search commands

will be executed independently and asynchronously from search (S0). Taken as a

whole, general search (S0) together with the specialized searches to be added will

constitute the entire extreme accuracy algorithm. The additional specialized search

commands will carve out subsets of U2(1) and U1(3) which are amenable to se-

rial search in practical time, will carve out the subsets which are tractable for evo-

lutionary search, and using algebraic manipulations and mathematical regression

equivalences will carve out the subsets which can be solved with complex search

commands.

There will be 24, which for cloud deployment can be expanded into 80 searches,

of these additional RQL search commands in the algorithm. Each RQL search com-

mand sets up a search island independent of all other search islands. This allows

the algorithm to be easily distributed across multiple computers or in a cloud envi-

ronment. The champions from each island are gathered together with the most fit

champion being the answer to this RQL query.

The algorithm’s claim of extreme accuracy is suported by what might be called

an informal argument rather than a formal proof. A brief sketch of the informal

arguments will accompany each of the 24 RQL commands with, hopefully, enough

information and examples to allow the reader to understand the basic reasoning

supporting the claim of extreme accuracy.

3 U1(3) Search Island

The RQL search command covering the space U1(3) is thankfully fairly straightfor-

ward and the space responds very well to evolutionary search.

• (S1) search regress(f0 (v0,v1),f1(v2,v3),f2(v4,v5)) where island(smart,standard,
10,25,200) op(ξ ,+,-,*,/,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,inv)

Search command (S1) performs multiple regressions with three basis functions,

each of which is in U1 and looks like f(t,t). Each of the variables v0 thru v5 contain

a single feature from the set x0 thru x99. Each of f0, f1, and f2 are function variables

contains functions from the set F ∪ ξ ∪ inv. From the terms, t, all embedded con-

Extreme Accuracy in Symbolic Regression 9

stants can be eliminated because they cancel out of the basis function and enhance

the regression coefficient for the basis function as shown in the following examples.

• (E6) regress(c0 +v0) = a+b*(c0+v0) = a+(b*c0)+b*v0 = regress(v0)
• (E7) regress(c0 /v0) = a+b*(c0 /v0) = a+(b*c0)/v0 = regress(inv(v0))
• (E8) regress(cos(c0)) = a+b*cos(c0) = c1

Since we can eliminate all of the embedded constants from each term in U1, we

are left with regress(f0(v0,v1),f1(v2,v3),f2(v4,v5)) as our search goal.

4 Search Island S2

The RQL search command covering the space f0(f1(v0,v1)) in U2 is necessary be-

cause large portions of this space do not respond well to evolutionary methods.

• (S2) search regress(f0 (f1(v0,v1))) where island(smart,standard,10,25,200)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
f1(ξ ,+,-,*,/,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

Search command (S2) performs single regressions where each of the variables

v0 thru v1 contain single features from the set x0 thru x99. The search space size is

12*16*100*100 = 1.92M. At 200 serial iterations per generation, this search will

require a maximum of 9,600 generations. On our test machine, each generation

requires .00012hrs. So the maximum time required for this search island to complete

is 1.152hrs.

5 Search Island S3

The RQL search command covering the space f0(f1(c0,v0)) in U2 allows the algo-

rithm to carve out a large space which responds very well to evolutionary search

methods.

• (S3) search regress(f0 (f1(c0,v0))) where island(smart,standard,10,25,200)
f0(inv,sqroot,square,cube,quart,exp,ln) f1(rdiv,*,+,-,rsub)

Search command (S3) performs single regressions where the variable v0 con-

tains features from the set x0 thru x99. The function rdiv is defined as rdiv(c0,v0) =

v0/c0. The function rsub is defined as rsub(c0,v0) = v0-c0. The search space size is

7*5*218*100 = 917M. All of the unary functions are mostly monotonic. The binary

operators are all monotonic. This very large search space responds well to evolu-

tionary methods.

10 Michael F. Korns

6 Search Islands S4 thru S15

The RQL search command also covering the space f0(f1(c0,v0)) in U2 but where

f0 are all of the unary functions allows the algorithm to isolate the space which

do not respond well to evolutionary search methods. With these search islands the

algorithm carves out a series of difficult spaces to be searched serially.

• (S4) search regress(cos(c0 +v0)) where island(smart,standard,10,25,2000)
• (S5) search regress(cos(c0 *v0)) where island(smart,standard,10,25,2000)
• (S6) search regress(cos(c0 /v0)) where island(smart,standard,10,25,2000)
• (S7) search regress(sin(c0 +v0)) where island(smart,standard,10,25,2000)
• (S8) search regress(sin(c0 *v0)) where island(smart,standard,10,25,2000)
• (S9) search regress(sin(c0 /v0)) where island(smart,standard,10,25,2000)
• (S10) search regress(tan(c0 +v0)) where island(smart,standard,10,25,2000)
• (S11) search regress(tan(c0 *v0)) where island(smart,standard,10,25,2000)
• (S12) search regress(tan(c0 /v0)) where island(smart,standard,10,25,2000)
• (S13) search regress(tanh(c0 +v0)) where island(smart,standard,10,25,2000)
• (S14) search regress(tanh(c0 *v0)) where island(smart,standard,10,25,2000)
• (S15) search regress(tanh(c0 /v0)) where island(smart,standard,10,25,2000)

Search commands (S4) thru (S15) perform single regressions where the variable

v0 contains features from the set x0 thru x99. The reverse argument order f0(v0,c0)

and the binary operators rdiv and rsub, from S(3), do not have to be searched because

these trigonometric functions all share the following properties.

• (E9) regress(cos(v0 +c0)) = regress(cos(c0 +v0))
• (E10) regress(cos(v0 -c0)) = regress(cos(c1 -v0))
• (E11) regress(cos(v0 /c0)) = regress(cos(c1 *v0))

The search space size, for each of these islands, is 218*100 = 26.2144M. At 2000

serial iterations per generation, this search will require a maximum of 13,107 gener-

ations. On our test machine, each generation requires .0001998hrs. So the maximum

time required for this search island to complete is 2.619hrs.

Taken together searches (S3) thru (S15) cover the entire space of f0(f1(c0,v0)) and

f0(f1(v0,c0)) where f0(+,-,*,/) and f1(inv,cos,sin,tan,tanh,sqroot,square,cube,quart,

exp,ln).

7 Search Islands S16

The RQL search command covering the space f1(f0(v0),f2(v1,v2)) in U2 allows the

algorithm to carve out a large space with both evolutionary and serial search meth-

ods. Search (S5) performs single regressions where the variables v0, v1, and v2

contain single features from the set x0 thru x99.

• (S16) search regress(f1 (f0(v0),f2(v1,v2))) where island(smart,standard,10,25,400)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
f1(+,-,rsub,*,/,rdiv)
f2(+,-,*,/)

Extreme Accuracy in Symbolic Regression 11

This space is so large that, in its cloud version, it must be carved up into 24

separate island searches in order to achieve results in practical time. The where

clause for each search (S5.1) thru (S5.24) island contains the following.

• where

island(smart,standard,10,25,400)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

The space is carved up by expanding the f1 and f2 functions as shown below.

• (S16.1) search regress(f0 (v0)/(v1/v2)) where ...as above...
• (S16.2) search regress(f0 (v0)/(v1*v2)) where ...as above...
• (S16.3) search regress(f0 (v0)/(v1+v2)) where ...as above...
• (S16.4) search regress(f0 (v0)/(v1-v2)) where ...as above...
• (S16.5) search regress(f0 (v0)*(v1/v2)) where ...as above...
• (S16.6) search regress(f0 (v0)*(v1*v2)) where ...as above...
• (S16.7) search regress(f0 (v0)*(v1+v2)) where ...as above...
• (S16.8) search regress(f0 (v0)*(v1-v2)) where ...as above...
• (S16.9) search regress((v1 /v2)/f0(v0)) where ...as above...
• (S16.10) search regress((v1 *v2)/f0(v0)) where ...as above...
• (S16.11) search regress((v1 +v2)/f0(v0)) where ...as above...
• (S16.12) search regress((v1 -v2)/f0(v0)) where ...as above...
• (S16.13) search regress(f0 (v0)+(v1/v2)) where ...as above...
• (S16.14) search regress(f0 (v0)+(v1*v2)) where ...as above...
• (S16.15) search regress(f0 (v0)+(v1+v2)) where ...as above...
• (S16.16) search regress(f0 (v0)+(v1-v2)) where ...as above...
• (S16.17) search regress(f0 (v0)-(v1 /v2)) where ...as above...
• (S16.18) search regress(f0 (v0)-(v1*v2)) where ...as above...
• (S16.19) search regress(f0 (v0)-(v1+v2)) where ...as above...
• (S16.20) search regress(f0 (v0)-(v1-v2)) where ...as above...
• (S16.21) search regress((v1 /v2)-f0(v0)) where ...as above...
• (S16.22) search regress((v1 *v2)-f0(v0)) where ...as above...
• (S16.23) search regress((v1 +v2)-f0(v0)) where ...as above...
• (S16.24) search regress((v1 -v2)-f0(v0)) where ...as above...

The search space size, for each of these islands, is 100*100*100*12 = 12M. At

400 serial iterations per generation, this search will require a maximum of 30,000

generations. On our test machine, each generation requires .00021hrs. So the maxi-

mum time required for this search island to complete is 6.3hrs.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = (1.57 + (2.13*(cos(x99)*(x98/

x97)))), the evolutionary search normally finds the target in less than half of the

maximum serial time.

Taken together searches (S16.1) thru (S16.24) cover the entire space of (S16).

8 Search Islands S17

The RQL search command covering the space f1(f0(v0,v1),f2(v2,v3)) in U2 allows

the algorithm to carve out a large space with both evolutionary and serial search

methods. Search (S17) performs single regressions where the variables v0, v1, v2,

and v3 contain single features from the set x0 thru x99. This is by far the largest and

most costly search required to cover U2.

12 Michael F. Korns

• (S17) search regress(f0 (f1(v0,v1),f2(v2,v3)))
where island(smart,standard,10,25,4000)
f0(*,/)
f1(+,-,*,/)
f2(+,-,*,/)

The reason that we can eliminate the + and - operators from f0 is precisely be-

cause those expansions are linear in two basis functions and will be solved inde-

pendently by search island (S1). Therefore we do not have to expand them here.

Nevertheless, even this reduced space is so large that it must be carved up into 32

separate island searches in order to achieve results in practical time. The space is

carved up by expanding the f0, f1, and f2 functions as shown below.

• (S17.1) search regress((v0 +v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.2) search regress((v0 +v1)*(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.3) search regress((v0 +v1)*(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.4) search regress((v0 +v1)*(v2 /v3)) where island(smart,standard,10,25,4000)
• (S17.5) search regress((v0 +v1)/(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.6) search regress((v0 +v1)/(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.7) search regress((v0 +v1)/(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.8) search regress((v0 +v1)/(v2/v3)) where island(smart,standard,10,25,4000)
• (S17.9) search regress((v0 -v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.10) search regress((v0 -v1)*(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.11) search regress((v0 -v1)*(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.12) search regress((v0 -v1)*(v2 /v3)) where island(smart,standard,10,25,4000)
• (S17.13) search regress((v0 -v1)/(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.14) search regress((v0 -v1)/(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.15) search regress((v0 -v1)/(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.16) search regress((v0 -v1)/(v2/v3)) where island(smart,standard,10,25,4000)
• (S17.17) search regress((v0 *v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.18) search regress((v0 *v1)*(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.19) search regress((v0 *v1)*(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.20) search regress((v0 *v1)*(v2 /v3)) where island(smart,standard,10,25,4000)
• (S17.21) search regress((v0 *v1)/(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.22) search regress((v0 *v1)/(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.23) search regress((v0 *v1)/(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.24) search regress((v0 *v1)/(v2/v3)) where island(smart,standard,10,25,4000)
• (S17.25) search regress((v0 /v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.26) search regress((v0 /v1)*(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.27) search regress((v0 /v1)*(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.28) search regress((v0 /v1)*(v2 /v3)) where island(smart,standard,10,25,4000)
• (S17.29) search regress((v0 /v1)/(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.30) search regress((v0 /v1)/(v2-v3)) where island(smart,standard,10,25,4000)
• (S17.31) search regress((v0 /v1)/(v2*v3)) where island(smart,standard,10,25,4000)
• (S17.32) search regress((v0 /v1)/(v2/v3)) where island(smart,standard,10,25,4000)

The search space size, for each of these islands, is 100*100*100*100 = 100M. At

4000 serial iterations per generation, this search will require a maximum of 25,000

generations. On our test machine, each generation requires .009hrs. So the maxi-

mum time required for this search island to complete is 225hrs = 9.375days.

Most often the evolutionary search finds the correct answer in far less time.

For instance, even in the case of this difficult target y = (1.57 + (2.13*((x97-

x96)/(x98+x99)))), the evolutionary search normally finds the target in less than

a quarter of the maximum serial time.

Taken together searches (S17.1) thru (S17.32) cover the entire space of (S17).

Extreme Accuracy in Symbolic Regression 13

9 Search Island S18

The RQL search command covering the space f0(f1(v0),f2(v1)) in U2 allows the al-

gorithm to carve out a large space with both evolutionary and serial search methods.

Search (S18) performs single regressions where the variables v0, and v1 contain

single features from the set x0 thru x99.

• (S18) search regress(f0 (f1(v0),f2(v1))) where island(smart,standard,10,25,200)
f0(+,-,*,/)
f1(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
f2(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

The search space size, for each of this island, is 100*100*12*12*4 = 5.76M. At

200 serial iterations per generation, this search will require a maximum of 28,800

generations. On our test machine, each generation requires .000135hrs. So the max-

imum time required for this search island to complete is 3.9hrs.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = (1.57 + (2.13*(ln(x98)/quart

(x99)))), the evolutionary search normally finds the target in less than half of the

maximum serial time.

10 Search Island S19

The RQL search command covering the space f0(f1(v0),f2(c0,v1)) in U2 allows the

algorithm to carve out a large space where evolutionary search and serial search

methods are both intractable. The formal RQL search command is.

• (E12) search regress(f1 (f0((v0),f2(c0,v1))) where island(smart,standard,10,25,200)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
f1(+,-,*,/,rsub,rdiv)
f2(+,-,*,/,rsub,rdiv)

If we are to try E12 by evolutionary search we run into trouble with test prob-

lems such as y = cos(v0)/(c0+v1). If we try serial search we see that the size of

this space is 100*100*12*6*6*218 = 1.13T which at 200 iterations per generation

will require 5,662,310,400 generations. On our test computer each generation re-

quires .00021hrs. So we will finish testing all possible serial combinations in ap-

proximately 1,189,085hrs = 49,545days = 135yrs.

Since searching for (E12) is not practical under any approach, we take a giant

leap and search for the the following.

• (S19) search regress(f0 (v0),1/f0(v0),v1,1/v1,f0(v0)*v1,f0(v0)/v1,v1/f0(v0),1/(v1*f0(v0)))
where island(smart,standard,10,25,200)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
onfinal(regress($poly$))

14 Michael F. Korns

There is remarkable difference between (E12) and (S19). Search (E12) performs

single regression; while, search (S19) performs multiple regressions where the vari-

ables v0, and v1 contain features from the set x0 thru x99 (the onfinal clause simply

eliminates all zero or near zero coefficient terms from the final answer and converts

to simpler form if possible). Showing/Learning how these two searches relate to

each other will require a bit of simple regression math and will help wake us up.

First, notice that search (E12) can be expanded into the following 36 single re-

gression cases with the following equivalent regressions. Notice that all except the

three bolded cases can be expanded into equivalent simpler regressions.

• (E12.1) regress(f0 (v0)+(c0+v1)) = regress(f0 (v0),v1)
• (E12.2) regress(f0 (v0)-(c0+v1)) = regress(f0 (v0),v1)
• (E12.3) regress(f0(v0)/(c0+v1)) = regress(f0 (v0)/(c0+v1))

• (E12.4) regress(f0 (v0)*(c0+v1)) = regress(f0 (v0),f0(v0)*v1)
• (E12.5) regress((c0 +v1)-f0(v0)) = regress(f0 (v0),v1)
• (E12.6) regress((c0 +v1)/f0(v0)) = regress(1/f0 (v0),v1/f0(v0))
• (E12.7) regress(f0 (v0)+(c0-v1)) = regress(f0 (v0),v1)
• (E12.8) regress(f0 (v0)-(c0-v1)) = regress(f0 (v0),v1))
• (E12.9) regress(f0(v0)/(c0-v1)) = regress(f0(v0)/(c0-v1))

• (E12.10) regress(f0 (v0)*(c0-v1)) = regress(f0 (v0),f0(v0)*v1)
• (E12.11) regress((c0 -v1)-f0(v0)) = regress(f0 (v0),v1)
• (E12.12) regress((c0 -v1)/f0(v0)) = regress(1/f0 (v0),v1/f0(v0))
• (E12.13) regress(f0 (v0)+(c0*v1)) = regress(f0 (v0),v1)
• (E12.14) regress(f0 (v0)-(c0*v1)) = regress(f0 (v0),v1)
• (E12.15) regress(f0 (v0)/(c0*v1)) = regress(f0 (v0)/v1)
• (E12.16) regress(f0 (v0)*(c0*v1)) = regress(f0 (v0)*v1)
• (E12.17) regress((c0 *v1)-f0(v0)) = regress(f0 (v0),v1)
• (E12.18) regress((c0 *v1)/f0(v0)) = regress(v1 /f0(v0))
• (E12.19) regress(f0 (v0)+(c0 /v1)) = regress(f0 (v0),1/v1)
• (E12.20) regress(f0 (v0)-(c0 /v1)) = regress(f0 (v0),1/v1)
• (E12.21) regress(f0 (v0)/(c0 /v1)) = regress(f0 (v0)*v1)
• (E12.22) regress(f0 (v0)*(c0 /v1)) = regress(f0 (v0)/v1)
• (E12.23) regress((c0 /v1)-f0(v0)) = regress(f0 (v0),1/v1)
• (E12.24) regress((c0 /v1)/f0(v0)) = regress(1/(f0 (v0)*v1))
• (E12.25) regress(f0 (v0)+(v1-c0)) = regress(f0 (v0),v1)
• (E12.26) regress(f0 (v0)-(v1-c0)) = regress(f0 (v0),v1)
• (E12.27) regress(f0(v0)/(v1-c0)) = regress(f0(v0)/(v1-c0))

• (E12.28) regress(f0 (v0)*(v1-c0)) = regress(f0 (v0),f0(v0)*v1)
• (E12.29) regress((v1 -c0)-f0(v0)) = regress(f0 (v0),v1)
• (E12.30) regress((v1 -c0)/f0(v0)) = regress(1/f0 (v0),v1/f0(v0))
• (E12.31) regress(f0 (v0)+(v1 /c0)) = regress(f0 (v0),v1)
• (E12.32) regress(f0 (v0)-(v1 /c0)) = regress(f0 (v0),v1)
• (E12.33) regress(f0 (v0)/(v1/c0)) = regress(f0 (v0)/v1)
• (E12.34) regress(f0 (v0)*(v1 /c0)) = regress(f0 (v0)*v1)
• (E12.35) regress((v1 /c0)-f0(v0)) = regress(f0 (v0),v1)
• (E12.36) regress((v1 /c0)/f0(v0)) = regress(v1 /f0(v0))

Eliminating the three bolded cases and collecting all the equivalent regres-

sion terms from the right hand side of equations (E12.1) thru (E12.36) we arrive

at regress(f0(v0),1/f0(v0),v1,1/v1,f0(v0)*v1,f0(v0)/v1,v1/f0(v0),1/(v1*f0(v0))) which is

equivalent to search (S19). Addressing the bolded cases (E12.3), (E12.9), and

(E12.27) is more complicated and will be left to the following section.

Extreme Accuracy in Symbolic Regression 15

The search space size, for island (S19), is 100*100*12 = 120,000. At 200 serial

iterations per generation, this search will require a maximum of 600 generations.

On our test machine, each generation requires .000435hrs. So the maximum time

required for this search island to complete is 0.261hrs.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = 1.57 + (2.13*(ln(x98)*(23.583-

x99))), the evolutionary search normally finds the target in less than a third of the

maximum serial time.

11 Search Island S20

The previous search island (S19) addressed the RQL search command covering the

space f0(f1(v0),f2(c0,v1)) see (E12); however, three more complicated regression

cases (E12.3), (E12.9), and (E12.27) were left to this section. If we are to try these

three cases by evolutionary search we run into trouble with test problems such as y

= cos(v0)/(c0-v1). If we try serial search we see that the size of each of these spaces

is 100*100*12*218 = 31.5B which at 200 iterations per generation will require

157,286,400 generations. On our test computer each generation requires .000135hrs.

So we will finish testing all possible serial combinations in approximately 21,233hrs

= 9,830days = 2.4yrs.

Since searching for (E12.3), (E12.9), and (E12.27) is not practical under any

approach, we take a giant leap and search for the the following.

• (S20) search regress(v1 *y,v1 ,f0(v0)) where island(smart,standard,10,25,200)
isolate(true)
f0(ξ ,inv,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)
onscore(0.0,600,regress(1.0/f0 (c0,$v1$),$f0$($v0$)/f0(c0,$v1$))
where

island(smart,standard,10,25,200)
f0(+,-,rsub)
c0(1.0/$w0$))

Not only is there is a big difference between (E12.3), (E12.9), (E12.27), and

(S20); but, the search goal in (S20) contains the term y which is the dependent

variable in the regression. While this may seem invalid in the domain of any basic

regression course taught in university, we will show below why it is perfectly valid

in this context.

First, the isolate(true) clause in (S20) keeps any of the champions from the first

where clause from reaching the final solution list. While there is nothing wrong

with using y during training (y is used repeatedly during fitness calculation while

training). Allowing y to appear in the final solution causes problems because y will

not be available during testing. So only solutions containing the features x0 thru x99

are appropriate for final champions.

Second, the onscore clause erases all champions except the top champion and

proceeds to convert the top champion into the form specified in the onscore goal

16 Michael F. Korns

and where clauses. The onscore clause is triggered when the first search achieves

a fitness score of 0.0 or when the number of training generations reaches 600. This

initiates a completely new search for regress(1.0/f0(c0,$v1$),$f0$($v0$)/f0(c0,$v1$))

which does not contain the inappropriate y term. Therefore the term y is used only

during training and setup but never in the final solution.

In order to understand how the two cascading searches in (S20) relate to the

three difficult cases (E12.3), (E12.9), and (E12.27), we must observe the following

regression equivalence chains in the situation where there is zero noise.

• (E12.9) regress(f0(v0)/(c0-v1)) −>

• (E12.9.1) y = a0+b0(f0(v0)/(c0-v1)) −>

• (E12.9.2) y(c0-v1) = a0(c0-v1) + b0f0(v0) −>

• (E12.9.3) c0y - v1y = a0(c0-v1) + b0f0(v0) −>

• (E12.9.4) c0y = a0(c0-v1) + b0f0(v0) + v1y −>

• (E12.9.5) y = (a0(c0-v1)/c0) + (b0f0(v0)/c0) + (v1y/c0) −>

• (E12.9.6) y = a0 - (a0/c0)*v1 + (b0/c0)*f0(v0) + (1/c0)*v1y −>

• (E12.9.7) regress(v1*y,v1,f0(v0))) −>

• (E12.9.8) y = a1 + w0*v1y - w1v1 + w2*f0(v0) −>

• (E12.9.9) w0=(1/c0) −>

• (E12.9.10) c0=(1/w0) −>

• (E12.9.11) regress(f0 (v0)/((1/w0)+v1)) −>

• (E12.9.12) regress(f0(v0)/(c0+v1))

Similar equivalence chains are true for (E12.3) and (E12.27). Taken all three

together, we see that the answers to (E12.3), (E12.9), and (E12.27) will be ei-

ther regress(f0(v0)/((1/w0)+v1)), regress(f0(v0)/((1/w0)-v1)), or regress(f0(v0)/(v1-

(1/w0))) which is exactly what search island (S20) proposes.

Let’s use this actual example, suppose the target formula is y = .913 + (62.13*

ln(x2)/(x4-23.451)). The first search in (S20) regress(v1*y,v1,f0(v0))) discovers that

the champion y = 0.913-(0.039*x4)+(0.0426421*(x4*y)-(2.65*ln(x2))); achieves a

fitness score of 0.0. This low fitness score triggers the onscore clause (otherwise

the onscore clause would be triggered by more than 600 generations passing). The

onscore clause substitutes for the items enclosed in $ sign pairs and searches for the

following goal regress(1.0/f0(c0,x4),ln(x2)/f0(c0,x4)) where f0(+,-,rsub) c0(23.451)

(since (1/.0426421) = 23.451). The final answer is y = 0.913+(62.13*(ln(x2)/(x4-

23.451))) with a final fitness score of 0.0.

The search space size, for island (S20), is 100*100*12 = 120,000. At 200 serial

iterations per generation, this search will require a maximum of 600 generations. On

our test machine, each generation requires .0003hrs. So the maximum time required

for this search island to complete is 0.18hrs and is followed immediately by a brief

search for the onscore goal.

Most often the evolutionary search finds the correct answer in far less time.

For instance, even in the case of this difficult target y = .913 + (62.13*ln(x2)/(x4-

23.451)), the evolutionary search normally finds the target in less than a half of the

maximum serial time.

Extreme Accuracy in Symbolic Regression 17

12 Search Island S21

The RQL search command covering the space f1(f0(c0,v0),f2(v1,v2)) in U2 allows

the algorithm to carve out a large space where evolutionary search and serial search

methods are both intractable. The formal RQL search command is.

• (E13) search regress(f1 (f0(c0,v0),f2(v1,v2))) where island(smart,standard,10,25,200)
f0(+,*,/)
f1(+,-,*,/,rsub,rdiv)
f2(+,-,*,/)

If we are to try E13 by evolutionary search we run into trouble with test prob-

lems such as y = (v1*v2)/(c0+v0). If we try serial search we see that the size of

this space is 100*100*100*3*6*4*218 = 18.87T which at 200 iterations per genera-

tion will require 94,371,840,000 generations. On our test computer each generation

requires .00021hrs. So we will finish testing all possible serial combinations in ap-

proximately 19,818,086hrs = 825,753days = 2,256yrs.

Since searching for (E13) is not practical under any approach, we take a giant

leap and search for the the following.

• (S21) search regress(v0 ,v1,v2,v1*v2,v1/v2,1.0/v0,v0*v1,v0*v2,
v0*v1*v2,(v0*v1)/v2,v1/v0,v2/v0,(v1*v2)/v0,v1/(v0*v2),
1/(v1+v2),v0/(v1+v2),1/(v1-v2),v0/(v1-v2),1/(v1*v2),v0/(v1*v2),
v2/v1,(v0*v2)/v1,1/(v0*(v1+v2)),1/(v0*v1*v2),v2/(v0*v1))
where island(smart,standard,10,25,200)
onfinal(regress($poly$))

Of course there is a big difference between (E13) and (S21). Search (E13) per-

forms single regression; while, search (S21) performs multiple regressions where

the variables v0, v1, and v2 contain features from the set x0 thru x99 (the onfinal

clause simply eliminates all zero or near zero coefficient terms from the final an-

swer and converts to simpler form if possible). Showing/Learning how these two

searches relate to each other will require a bit of simple regression math and our

close attention.

First, notice that search (E13) can be expanded into the following 72 single re-

gression cases with the following equivalent regressions. Notice that all except the

three bolded cases can be expanded into equivalent simpler regressions.

• (E13.1) regress((c0 +v0)+(v1+v2)) = regress(v0 ,v1,v2)
• (E13.2) regress((c0 +v0)+(v1-v2)) = regress(v0 ,v1,v2)
• (E13.3) regress((c0 +v0)+(v1*v2)) = regress(v0 ,v1*v2)
• (E13.4) regress((c0 +v0)+(v1/v2)) = regress(v0 ,v1/v2)
• (E13.5) regress((c0 +v0)-(v1+v2)) = regress(v0 ,v1,v2)
• (E13.6) regress((c0 +v0)-(v1-v2)) = regress(v0 ,v1,v2)
• (E13.7) regress((c0 +v0)-(v1*v2)) = regress(v0 ,v1*v2)
• (E13.8) regress((c0 +v0)-(v1 /v2)) = regress(v0 ,v1/v2)
• (E13.9) regress((c0 +v0)*(v1+v2)) = regress(v1 ,v2,v0*v1,v0*v2)
• (E13.10) regress((c0 +v0)*(v1-v2)) = regress(v1 ,v2,v0*v1,v0*v2)
• (E13.11) regress((c0 +v0)*(v1*v2)) = regress(v1 *v2,v0*v1*v2)
• (E13.12) regress((c0 +v0)*(v1 /v2)) = regress(v1 /v2,(v0*v1)/v2)
• (E13.13) regress((c0 +v0)/(v1+v2)) = regress(1/(v1 +v2),v0/(v1+v2))

18 Michael F. Korns

• (E13.14) regress((c0 +v0)/(v1-v2)) = regress(1/(v1 +v2),v0/(v1+v2))
• (E13.15) regress((c0 +v0)/(v1*v2)) = regress(1/(v1 *v2),v0/(v1*v2))
• (E13.16) regress((c0 +v0)/(v1/v2)) = regress(v2 /v1,(v0*v2)/v1)
• (E13.17) regress((v1 +v2)-(c0+v0)) = regress(v0 ,v1,v2)
• (E13.18) regress((v1 -v2)-(c0+v0)) = regress(v0 ,v1,v2)
• (E13.19) regress((v1 *v2)-(c0+v0)) = regress(v0 ,v1*v2)
• (E13.20) regress((v1 /v2)-(c0+v0)) = regress(v0 ,v1/v2)
• (E13.21) regress((v1 +v2)/(c0+v0)) = regress((v1+v2)/(c0+v0))

• (E13.22) regress((v1 -v2)/(c0+v0)) = regress((v1-v2)/(c0+v0))

• (E13.23) regress((v1 *v2)/(c0+v0)) = regress((v1*v2)/(c0+v0))

• (E13.24) regress((v1 /v2)/(c0+v0)) = regress((v1 /v2)/(c0+v0))

• (E13.25) regress((c0 *v0)+(v1+v2)) = regress(v0 ,v1,v2)
• (E13.26) regress((c0 *v0)+(v1-v2)) = regress(v0 ,v1,v2)
• (E13.27) regress((c0 *v0)+(v1*v2)) = regress(v0 ,v1*v2)
• (E13.28) regress((c0 *v0)+(v1 /v2)) = regress(v0 ,v1/v2)
• (E13.29) regress((c0 *v0)-(v1+v2)) = regress(v0 ,v1,v2)
• (E13.30) regress((c0 *v0)-(v1-v2)) = regress(v0 ,v1,v2)
• (E13.31) regress((c0 *v0)-(v1*v2)) = regress(v0 ,v1*v2)
• (E13.32) regress((c0 *v0)-(v1 /v2)) = regress(v0 ,v1/v2)
• (E13.33) regress((c0 *v0)*(v1+v2)) = regress(v0 *v1,v0*v2)
• (E13.34) regress((c0 *v0)*(v1-v2)) = regress(v0 *v1,v0*v2)
• (E13.35) regress((c0 *v0)*(v1*v2)) = regress(v0 *v1*v2)
• (E13.36) regress((c0 *v0)*(v1 /v2)) = regress((v0 *v1)/v2)
• (E13.37) regress((c0 *v0)/(v1+v2)) = regress(v0 /(v1+v2))
• (E13.38) regress((c0 *v0)/(v1-v2)) = regress(v0 /(v1+v2))
• (E13.39) regress((c0 *v0)/(v1*v2)) = regress(v0 /(v1*v2))
• (E13.40) regress((c0 *v0)/(v1 /v2)) = regress((v0 *v2)/v1)
• (E13.41) regress((v1 +v2)-(c0*v0)) = regress(v0 ,v1,v2)
• (E13.42) regress((v1 -v2)-(c0*v0)) = regress(v0 ,v1,v2)
• (E13.43) regress((v1 *v2)-(c0*v0)) = regress(v0 *v1*v2)
• (E13.44) regress((v1 /v2)-(c0*v0)) = regress((v0 *v1)/v2)
• (E13.45) regress((v1 +v2)/(c0*v0)) = regress(v1 /v0,v2/v0)
• (E13.46) regress((v1 -v2)/(c0*v0)) = regress(v1 /v0,v2/v0)
• (E13.47) regress((v1 *v2)/(c0*v0)) = regress((v1 *v2)/v0)
• (E13.48) regress((v1 /v2)/(c0*v0)) = regress(v1 /(v0*v2))
• (E13.49) regress((c0 /v0)+(v1+v2)) = regress(1/v0 ,v1,v2)
• (E13.50) regress((c0 /v0)+(v1-v2)) = regress(1/v0 ,v1,v2)
• (E13.51) regress((c0 /v0)+(v1*v2)) = regress(1/v0 ,v1*v2)
• (E13.52) regress((c0 /v0)+(v1/v2)) = regress(1/v0 ,(v1/v2))
• (E13.53) regress((c0 /v0)-(v1+v2)) = regress(1/v0 ,v1,v2)
• (E13.54) regress((c0 /v0)-(v1-v2)) = regress(1/v0 ,v1,v2)
• (E13.55) regress((c0 /v0)-(v1*v2)) = regress(1/v0 ,v1*v2)
• (E13.56) regress((c0 /v0)-(v1 /v2)) = regress(1/v0 ,(v1/v2))
• (E13.57) regress((c0 /v0)*(v1+v2)) = regress(v1 /v0,v2/v0)
• (E13.58) regress((c0 /v0)*(v1-v2)) = regress(v1 /v0,v2/v0)
• (E13.59) regress((c0 /v0)*(v1*v2)) = regress(f0 (v0),v1)
• (E13.60) regress((c0 /v0)*(v1 /v2)) = regress(f0 (v0),v1)
• (E13.61) regress((c0 /v0)/(v1+v2)) = regress(v1 /v0,v2/v0)
• (E13.62) regress((c0 /v0)/(v1-v2)) = regress(v1 /v0,v2/v0)
• (E13.63) regress((c0 /v0)/(v1*v2)) = regress(1(v0 *v1*v2))
• (E13.64) regress((c0 /v0)/(v1/v2)) = regress(v2 /(v0*v1))
• (E13.65) regress((v1 +v2)-(c0 /v0)) = regress(1/v0 ,v1,v2)
• (E13.66) regress((v1 -v2)-(c0 /v0)) = regress(1/v0 ,v1,v2)
• (E13.67) regress((v1 *v2)-(c0 /v0)) = regress(1/v0 ,v1*v2)
• (E13.68) regress((v1 /v2)-(c0 /v0)) = regress(1/v0 ,v1/v2)

Extreme Accuracy in Symbolic Regression 19

• (E13.69) regress((v1 +v2)/(c0/v0)) = regress(v0 *v1,v0*v2)
• (E13.70) regress((v1 -v2)/(c0/v0)) = regress(v0 *v1,v0*v2)
• (E13.71) regress((v1 *v2)/(c0 /v0)) = regress(v0 *v1*v2)
• (E13.72) regress((v1 /v2)/(c0/v0)) = regress((v0 *v1)/v2)

Eliminating the four bolded cases and collecting all the equivalent regression

terms from the right hand side of equations (E13.1) thru (E13.72) we arrive at search

(S21). Addressing the bolded cases (E13.21) thru (E13.24) is more complicated and

will be left to the following section.

The search space size, for island (S21), is 100*100*100 = 1,000,000. At 200

serial iterations per generation, this search will require a maximum of 5000 gener-

ations. On our test machine, each generation requires .0006hrs. So the maximum

time required for this search island to complete is 3hrs.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = (1.57 + (2.13*(x98*x67)/(23.583-

x99))), the evolutionary search normally finds the target in less than half of the max-

imum serial time.

13 Search Island S22

The previous search island (S21) addressed the RQL search command covering the

space f1(f0(c0,v0),f2(v1,v2)) see (E13); however, three more complicated regression

cases (E13.21) thru (E13.24) were left to this section. If we are to try these three

cases by evolutionary search we run into trouble with test problems such as y =

(v0*v1)/(c0+v2). If we try serial search we see that the size of each of these spaces is

100*100*100*218 = 262.144B which at 4000 iterations per generation will require

65,536,000 generations. On our test computer each generation requires .00021hrs.

So we will finish testing all possible serial combinations in approximately 41,287hrs

= 1,720days = 47yrs.

Since searching for (E13.21) thru (E13.24) is not practical under any approach,

we take a giant leap and search for the the following.

• (S22) search regress(v0 *y,v0 ,v1,v2,v1*v2,v1/v2) where island(smart,standard,10,25,200)
isolate(true)
onscore(0.0,5000,regress(f0 ($v1$,$v2$)/f1(c0,$v0$))
where

island(smart,standard,10,25,200)
f0(+,-,*,/)
f1(+,-,rsub)
c0(1.0/$w0$))

Clearly there is a big difference between (E13.21) thru (E13.24) and (S22), and

also the search goal in (S22) contains the term y which being the dependent variable

in the regression. First, the isolate(true) clause in (S22) keeps any of the champi-

ons from the first where clause from reaching the final solution list. While there

is nothing wrong with using y during training (y is used repeatedly during fitness

20 Michael F. Korns

calculation while training). Allowing y to appear in the final solution causes prob-

lems because y will not be available during testing. So only solutions containing the

features x0 thru x99 are appropriate for final champions.

Second, the onscore clause erases all champions except the top champion and

proceeds to convert the top champion into the form specified in the onscore goal

and where clauses. The onscore clause is triggered when the first search achieves

a fitness score of 0.0 or when the number of training generations reaches 5000.

This initiates a completely new search for regress(f0($v1$,$v2$)/f1(c0,$v0$)) which

does not contain the inappropriate y term. Therefore the term y is used only during

training and setup but never in the final solution.

In order to understand how the two cascading searches in (S22) relate to the four

difficult cases (E13.21) thru (E13.24), we must observe the following regression

equivalence chains in the situation where there is zero noise.

• (E13.23) regress((v1 *v2)/(c0+v0)) −>

• (E13.23.1) y = a0+b0((v1*v2)/(c0+v0)) −>

• (E13.23.2) y(c0+v0) = a0(c0+v0) + b0(v1*v2) −>

• (E13.23.3) c0y + v0y = a0(c0+v0) + b0(v1*v2) −>

• (E13.23.4) c0y = a0c0 + a0v0 + b0(v1*v2) - v0y −>

• (E13.23.5) y = a0 + (a0/c0)v0 + (b0/c0)(v1*v2) - (1/c0)v0y −>

• (E13.23.6) regress(v0*y,v0,v1*v2)) −>

• (E13.23.7) y = a1 - w0*v0y - w1v0 + w2*(v1*v2) −>

• (E13.23.8) w0=(1/c0) −>

• (E13.23.9) c0=(1/w0) −>

• (E13.23.10) regress((v1 *v2)/((1/w0)+v0)) −>

• (E13.23.11) regress((v1 *v2)/(c0+v0))

Similar equivalence chains are true for (E13.21), (E13.22) and (E13.24). Taken

all three together, we see that the answers to (E13.21), (E13.22), (E13.23) and

(E13.24) will be regress(f0(v1,v2)/f1((1/w0),v0)) where f0(+,-,*,/) and f1(+,-,rsub),

which is exactly what search island (S22) proposes.

Let’s use this actual example, suppose the target formula is y = 1.0 + (2.0*((x1*

x2)/(23.451+x4)). The first search in (S22) regress(v0*y,v0,v1,v2,v1*v2,v1/v2)) dis-

covers that the champion y = y = 1-(0.0426421*(x4*y))+(0*x4)+(0*x2)+(0*x1)+

(0.085289*(x2*x1))+(0*(x2/x1)); achieves a fitness score of 0.0. This low fitness

score triggers the onscore clause (otherwise the onscore clause would be triggered

by more than 5000 generations passing). The onscore clause substitutes for the

items enclosed in $ sign pairs and searches for the following goal regress(f0(x1,x2)/

f1(c0,x4)) where f0(+,-,*,/) f1(+,-,rsub) c0(23.451) (since (1/.0426421) = 23.451).

The final answer is y = 1.0 + (2.0*((x1*x2)/(23.451+x4))) with a final fitness score

of 0.0.

The search space size, for island (S22), is 100*100*100*12 = 720,000. At 200

serial iterations per generation, this search will require a maximum of 60,000 gen-

erations. On our test machine, each generation requires .0003hrs. So the maximum

time required for this search island to complete is 18hrs and is followed immediately

by a brief search for the onscore goal.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = 1.0 + (2.0*((x1*x2)/(23.451+

Extreme Accuracy in Symbolic Regression 21

x4))), the evolutionary search normally finds the target in less than a third of the

maximum serial time.

14 Search Island S23

The RQL search command covering the space f1(f0(c1,v1),f2(c0,v0)) in U2 allows

the algorithm to carve out a large space where evolutionary search and serial search

methods are both intractable. The formal RQL search command is.

• (E14) search regress(f1 (f0(c1,v1),f2(c0,v0))) where island(smart,standard,10,25,200)
f0(+,-,*,/)
f1(+,-,*,/)
f2(+,-,*,/)

If we are to try E14 by evolutionary search we run into trouble with test problems

such as y = (c1*v1)/(c0-v0). If we try serial search we see that the size of this space is

100*100*4*4*4*218*218 = 43.9 Quadrillion which at 200 iterations per generation

will require 219,902,325,555,200 generations. On our test computer each genera-

tion requires .00021hrs. So we will finish testing all possible serial combinations in

approximately 461,794,883,665hrs = 19,241,453,486days = 52,716,310yrs.

Since searching for (E14) is not practical under any approach, we take a giant

leap and search for the the following.

• (S23) search regress(v0 ,v1,1.0/v0,1.0/v1,v0*v1,v0/v1,v1/v0,1/(v0*v1))
where island(smart,standard,10,25,200)
onfinal(regress($poly$))

Of course there is a big difference between (E14) and (S23). Search (E14) per-

forms single regression; while, search (S23) performs multiple regressions where

the variables v0, and v1 contain features from the set x0 thru x99 (the onfinal clause

simply eliminates all zero or near zero coefficient terms from the final answer and

converts to simpler form if possible). Showing/Learning how these two searches re-

late to each other will require a bit of simple regression math and our close attention.

First, notice that search (E14) can be expanded into the following 64 single re-

gression cases with the following equivalent regressions. Notice that all except the

three bolded cases can be expanded into equivalent simpler regressions.

• (E14.1) regress((c1 +v1)+(c0+v0)) = regress(v1 ,v0)
• (E14.2) regress((c1 +v1)+(c0-v0)) = regress(v1 ,v0)
• (E14.3) regress((c1 +v1)+(c0*v0)) = regress(v1 ,v0)
• (E14.4) regress((c1 +v1)+(c0/v0)) = regress(v1 ,1/v0)
• (E14.5) regress((c1 -v1)+(c0+v0)) = regress(v1 ,v0)
• (E14.6) regress((c1 -v1)+(c0-v0)) = regress(v1 ,v0)
• (E14.7) regress((c1 -v1)+(c0*v0)) = regress(v1 ,v0)
• (E14.8) regress((c1 -v1)+(c0 /v0)) = regress(v1 ,1/v0)
• (E14.9) regress((c1 *v1)+(c0+v0)) = regress(v1 ,v0)
• (E14.10) regress((c1 *v1)+(c0-v0)) = regress(v1 ,v0)
• (E14.11) regress((c1 *v1)+(c0*v0)) = regress(v1 ,v0)

22 Michael F. Korns

• (E14.12) regress((c1 *v1)+(c0 /v0)) = regress(v1 ,1/v0)
• (E14.13) regress((c1 /v1)+(c0+v0)) = regress(1/v1 ,v0)
• (E14.14) regress((c1 /v1)+(c0-v0)) = regress(1/v1 ,v0)
• (E14.15) regress((c1 /v1)+(c0*v0)) = regress(1/v1 ,v0)
• (E14.16) regress((c1 /v1)+(c0/v0)) = regress(1/v1 ,1/v0)
• (E14.17) regress((c1 +v1)-(c0+v0)) = regress(v1 ,v0)
• (E14.18) regress((c1 +v1)-(c0-v0)) = regress(v1 ,v0)
• (E14.19) regress((c1 +v1)-(c0*v0)) = regress(v1 ,v0)
• (E14.20) regress((c1 +v1)-(c0 /v0)) = regress(v1 ,1/v0)
• (E14.21) regress((c1 -v1)-(c0+v0)) = regress(v1 ,v0)
• (E14.22) regress((c1 -v1)-(c0-v0)) = regress(v1 ,v0)

• (E14.23) regress((c1 -v1)-(c0*v0)) = regress(v1 ,v0)
• (E14.24) regress((c1 -v1)-(c0 /v0)) = regress(v1 ,1/v0)
• (E14.25) regress((c1 *v1)-(c0+v0)) = regress(v1 ,v0)
• (E14.26) regress((c1 *v1)-(c0-v0)) = regress(v1 ,v0)
• (E14.27) regress((c1 *v1)-(c0*v0)) = regress(v1 ,v0)
• (E14.28) regress((c1 *v1)-(c0 /v0)) = regress(v1 ,1/v0)
• (E14.29) regress((c1 /v1)-(c0+v0)) = regress(1/v1 ,v0)
• (E14.30) regress((c1 /v1)-(c0-v0)) = regress(1/v1 ,v0)
• (E14.31) regress((c1 /v1)-(c0*v0)) = regress(1/v1 ,v0)
• (E14.32) regress((c1 /v1)-(c0 /v0)) = regress(1/v1 ,1/v0)
• (E14.33) regress((c1 +v1)*(c0+v0)) = regress(v0 ,v1,v0*v1)
• (E14.34) regress((c1 +v1)*(c0-v0)) = regress(v0 ,v1,v0*v1)
• (E14.35) regress((c1 +v1)*(c0*v0)) = regress(v0 ,v0*v1)
• (E14.36) regress((c1 +v1)*(c0 /v0)) = regress(1/v0 ,v1/v0)
• (E14.37) regress((c1 -v1)*(c0+v0)) = regress(v0 ,v1,v0*v1)
• (E14.38) regress((c1 -v1)*(c0-v0)) = regress(v0 ,v1,v0*v1)
• (E14.39) regress((c1 -v1)*(c0*v0)) = regress(v0 ,v0*v1)
• (E14.40) regress((c1 -v1)*(c0 /v0)) = regress(1/v0 ,v1/v0)
• (E14.41) regress((c1 *v1)*(c0+v0)) = regress(v1 ,v0*v1)
• (E14.42) regress((c1 *v1)*(c0-v0)) = regress(v1 ,v0*v1)
• (E14.43) regress((c1 *v1)*(c0*v0)) = regress(v0 *v1)
• (E14.44) regress((c1 *v1)*(c0 /v0)) = regress(v1 /v0)
• (E14.45) regress((c1 /v1)*(c0+v0)) = regress(1/v1 ,v0/v1)
• (E14.46) regress((c1 /v1)*(c0-v0)) = regress(1/v1 ,v0/v1)
• (E14.47) regress((c1 /v1)*(c0*v0)) = regress(v0 /v1)
• (E14.48) regress((c1 /v1)*(c0 /v0)) = regress(1/(v0 *v1))
• (E14.49) regress((c1 +v1)/(c0+v0)) = regress(1/(c0+v0),v1/(c0+v0))

• (E14.50) regress((c1 +v1)/(c0-v0)) = regress(1/(c0+v0),v1/(c0+v0))

• (E14.51) regress((c1 +v1)/(c0*v0)) = regress(1/v0 ,v1/v0)
• (E14.52) regress((c1 +v1)/(c0/v0)) = regress(v0 ,v0*v1)
• (E14.53) regress((c1 -v1)/(c0+v0)) = regress(1/(c0+v0),v1/(c0+v0))

• (E14.54) regress((c1 -v1)/(c0-v0)) = regress(1/(c0 +v0),v1/(c0+v0))

• (E14.55) regress((c1 -v1)/(c0*v0)) = regress(1/v0 ,v1/v0)
• (E14.56) regress((c1 -v1)/(c0/v0)) = regress(v0 ,v0*v1)
• (E14.57) regress((c1 *v1)/(c0+v0)) = regress(v1 /(c0+v0))

• (E14.58) regress((c1 *v1)/(c0-v0)) = regress(v1 /(c0+v0))

• (E14.59) regress((c1 *v1)/(c0*v0)) = regress(v1 /v0)
• (E14.60) regress((c1 *v1)/(c0 /v0)) = regress(v0 *v1)
• (E14.61) regress((c1 /v1)/(c0+v0)) = regress(1/(v1*(c0+v0)))

• (E14.62) regress((c1 /v1)/(c0-v0)) = regress(1/(v1 *(c0+v0)))

• (E14.63) regress((c1 /v1)/(c0*v0)) = regress(1/v0 *v1)
• (E14.64) regress((c1 /v1)/(c0/v0)) = regress(v0 /v1)

Extreme Accuracy in Symbolic Regression 23

Eliminating the eight bolded cases and collecting all the equivalent regression

terms from the right hand side of equations (E14.1) thru (E14.64) we arrive at

search (S23). Addressing the bolded cases (E14.49), (E14.50), (E14.53), (E14.54),

(E14.57), (E14.58), (E14.61), and (E14.62) is more complicated and will be left to

the following section.

The search space size, for island (S23), is 100*100 = 10,000. At 200 serial itera-

tions per generation, this search will require a maximum of 50 generations. On our

test machine, each generation requires .0006hrs. So the maximum time required for

this search island to complete is 0.03hrs.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = (1.57 + (2.13*(3.23*x67)*

(23.583-x99))), the evolutionary search normally finds the target in less than a third

of the maximum serial time.

15 Search Island S24

The previous search island (S23) addressed the RQL search command covering the

space f1(f0(c1,v1),f2(c0,v0)) see (E14); however, eight more complicated regression

cases (E14.49), (E14.50), (E14.53), (E14.54), (E14.57), (E14.58), (E14.61), and

(E14.62) were left to this section. If we are to try these eight cases by evolutionary

search we run into trouble with test problems such as y = (c1*v1)/(c0+v0). If we try

serial search we see that the size of each of these spaces is 100*100*4*4*4*218*218

= 43.9 Quadrillion which at 200 iterations per generation will require 219,902,325,-

555,200 generations. On our test computer each generation requires .00021hrs. So

we will finish testing all possible serial combinations in approximately 461,794,883,-

665hrs = 19,241,453,486days = 52,716,310yrs.

Since searching for (E14.49), (E14.50), (E14.53), (E14.54), (E14.57), (E14.58),

(E14.61), and (E14.62) is not practical under any approach, we take a giant leap and

search for the the following.

• (S24) search regress(v0 *y,v0 ,v1,1/v1) where island(smart,standard,10,25,200)
isolate(true)
onscore(0.0,50,regress(1/f0 (c0,$v0$),$v1$/f0(c0,$v0$),1/($v1$*f0(c0,$v0$)))
where

island(10,25,200)
f0(+,-,rsub)
c0(1.0/$w0$)
onfinal(regress($poly$)))

Clearly there is a big difference between (E14.49), (E14.50), (E14.53), (E14.54),

(E14.57), (E14.58), (E14.61), and (E14.62) and (S24), and also the search goal in

(S23) contains the term y which being the dependent variable in the regression. First,

the isolate(true) clause in (S24) keeps any of the champions from the first where

clause from reaching the final solution list. While there is nothing wrong with using

y during training (y is used repeatedly during fitness calculation while training).

24 Michael F. Korns

Allowing y to appear in the final solution causes problems because y will not be

available during testing. So only solutions containing the features x0 thru x99 are

appropriate for final champions.

Second, the onscore clause erases all champions except the top champion and

proceeds to convert the top champion into the form specified in the onscore goal

and where clauses. The onscore clause is triggered when the first search achieves a

fitness score of 0.0 or when the number of training generations reaches 50. This ini-

tiates a completely new search for regress(1/f0(c0,$v0$),$v1$/f0(c0,$v0$),1/($v1$*

f0(c0,$v0$))) which does not contain the inappropriate y term. Therefore the term y

is used only during training and setup but never in the final solution.

In order to understand how the two cascading searches in (S24) relate to the eight

difficult cases (E14.49), (E14.50), (E14.53), (E14.54), (E14.57), (E14.58), (E14.61),

and (E14.62), we must observe the following regression equivalence chains in the

situation where there is zero noise.

• (E14.61) regress((c1 /v1)/(c0+v0)) −>

• (E14.61.1) y = a + b((c1 /v1)/(c0+v0)) −>

• (E14.61.2) y(c0+v0) = a(c0+v0) + ((bc1)/v1) −>

• (E14.61.3) c0y + v0y = a(c0+v0) + ((bc1)/v1) −>

• (E14.61.4) c0y = ac0 + av0 + ((bc1)/v1) - v0y −>

• (E14.61.5) y = a + (a/c0)v0 + (bc1/c0)/v1 - (1/c0)v0y −>

• (E14.61.6) regress(v0y,v0,1/v1) −>

• (E14.61.7) y = a1 + w0v0y + w1v0 + w2/v1 −>

• (E14.61.8) w0 = (1/c0) −>

• (E14.61.9) c0=(1/w0) −>

• (E14.61.10) regress(1/(v1 *((1/w0)+v0))) −>

• (E14.61.11) regress((c1 /v1)/(c0+v0))

Similar equivalence chains are true for (E14.49), (E14.50), (E14.53), (E14.54),

(E14.57), (E14.58), and (E14.62). Taken all together, we see that the answers

to the eight bolded cases will be regress(1/f0(c0,$v0$),$v1$/f0(c0,$v0$),1/($v1$*

f0(c0,$v0$))) where f0(+,-,rsub), which is exactly what search island (S24) proposes.

Let’s use this actual example, suppose the target formula is y = 1.0 + (2.0*

((2.8*x2)/(23.451+x4)). The first search in (S24) regress(v0*y,v0,v1,1/v1) discov-

ers that the champion y = y = 1-(0.0426421*(x4*y))+(0*x4)+(2.8*x2)+(0*x1)+(0*

(1/x2))); achieves a fitness score of 0.0. This low fitness score triggers the onscore

clause (otherwise the onscore clause would be triggered by more than 50 genera-

tions passing). The onscore clause substitutes for the items enclosed in $ sign pairs

and searches for the following goal regress(1/f0(c0,x4),x2/f0(c0,x4),1/(x2*f0(c0,x4)))

where f0(+,-,rsub) c0(23.451) (since (1/.0426421) = 23.451). The final answer is y

= 1.0 + (4.8*(x2/(23.451+x4))) with a final fitness score of 0.0.

The search space size, for island (S24), is 100*100 = 10,000. At 200 serial itera-

tions per generation, this search will require a maximum of 50 generations. On our

test machine, each generation requires .0003hrs. So the maximum time required for

this search island to complete is 0.015hrs and is followed immediately by a brief

search for the onscore goal.

Most often the evolutionary search finds the correct answer in far less time. For

instance, even in the case of this difficult target y = 1.0 + (2.0*((2.8*x2)/(23.451+

Extreme Accuracy in Symbolic Regression 25

x4))), the evolutionary search normally finds the target in less than a third of the

maximum serial time.

16 Accuracy Measurements

Packaging together RQL search commands from (S0) thru (S24), with searches

(S16.1 thru S16.24) and (S17.1 thru S17.32) expanded for cloud deployment, we

attack the 30 test problems using 81 processor units. As mentioned, each of the

problems were trained and tested on 10,000 training examples with 100 features.

The maximum time to complete a test problem in our cloud environment is 225

hours or 9.375 days. The results in Table 1 demonstrate extreme accuracy on the 30

test problems.

Notice the extreme search efficiency which Table 1 demonstrates. Our assertion

is that the extreme accuracy algorithm is getting the same accuracy on U2(1) and

U1(3) as if each and every single element of those sets were searched serially; and

yet we are never evaluating more than a few billion candidates. Notice also the high

variance in WFFs evaluated per test problem. This is the result of the random nature

of evolutionary search and how much of the search burden must be carried by the

serial search and mathematical treatments.

Obviously extreme accuracy is not the same as absolute accuracy and is there-

fore fragile under some conditions. Extreme accuracy will stop at the first estimator

which achieves an NLSE of 0.0 on the training data, and hope that the estimator

will achieve an NLSE of .0001 or less on the testing data. Yes, an extremely accu-

rate algorithm is guaranteed to find a perfect champion (estimator training fitness

of 0.0) if there is one to be found; but, this perfect champion may or may not be

the estimator which was used to create the testing data. For instance in the target

formula y = 1.0 + (100.0*sin(x0)) + (.001*square(x0)) we notice that the final term

(.0001*square(x0)) is less significant at low ranges of x0; but, as the absolute mag-

nitude of x0 increases, the final term is increasingly significant. And, this does not

even cover the many issues with problematic training data ranges and poorly be-

haved target formulas within those ranges. For instance, creating training data in the

range -1000 to 1000 for the target formula y = 1.0 + exp(x2*34.23) runs into many

issues where the value of y exceeds the range of a 64 bit IEEE real number. So as

one can see the concept of extreme acuracy is just the beginning of the attempt to

conquer the accuracy problem in SR.

In an attempt to further explore the behavior we have labeled extreme accuracy,

An extreme training matrix of independent variables was filled with random num-

bers in the range [0,1]. Then an extreme testing matrix of independent variables was

filled with random numbers in the range [-1,0]. The champion, which was trained on

the [0,1] range, had never seen this data before and had never seen data in the range

[-1,0] before. The champion’s results against the extreme testing data are shown in

the Extreme-NLSE column of Table 1.

26 Michael F. Korns

Table 1: Results demonstrating extreme accuracy

Test WFFs Train-NLSE Test-NLSE Extreme-NLSE

T01 1K 0.0000 0.0000 0.0000

T02 5K 0.0000 0.0000 0.0000
T03 5K 0.0000 0.0000 0.0000
T04 5K 0.0000 0.0000 0.0000
T05 6K 0.0000 0.0000 0.0000
T06 51M 0.0000 0.0000 0.0000
T07 6K 0.0000 0.0000 0.0000
T08 2B 0.0000 0.0000 0.0000
T09 12M 0.0000 0.0000 0.0000
T10 139M 0.0000 0.0000 0.0000
T11 32M 0.0000 0.0000 0.0000
T12 6K 0.0000 0.0000 0.0000
T13 3K 0.0000 0.0000 0.0000
T14 17K 0.0000 0.0000 0.0000
T15 3M 0.0000 0.0000 0.0000
T16 1M 0.0000 0.0000 0.0255
T17 12M 0.0000 0.0000 0.0000
T18 14M 0.0000 0.0000 0.0000
T19 729K 0.0000 0.0000 0.0000
T20 22M 0.0000 0.0000 0.0000
T21 41M 0.0000 0.0000 0.0000
T22 61M 0.0000 0.0000 0.0000
T23 32M 0.0000 0.0000 0.0000
T24 2K 0.0000 0.0000 0.0000
T25 6K 0.0000 0.0000 0.0000
T26 436K 0.0000 0.0000 0.0000
T27 158K 0.0000 0.0000 0.0000
T28 2K 0.0000 0.0000 0.0000
T29 3M 0.0000 0.0000 0.0000
T30 2M 0.0000 0.0000 0.0000

(Note1: the number of individuals evaluated before finding a solution is listed in the Well Formed

Formulas (WFFs) column) (Note2: the fitness score of the champion on the training data is listed

in the (Train-NLSE) column) (Note3: the fitness score of the champion on the testing data is listed

in the (Test-NLSE) column) (Note4: the fitness score of the champion on the extreme range data is

listed in the (Extreme-NLSE) column)

It should be noted that the end user has no knowledge of RQL searches (S0)

thru (S24). These searches are applied, behind the veil, when the user submits a

test problem. Similarly, the end user had no knowledge of the details of the cloud

deployment - nor is it necessary or desirable that the end user have such involvement.

All the extreme algorithm timings and tables of results in this paper have been

performed, in a modest cloud deployment. In a modest cloud deployment, searches

(S0) thru (S15), (S16.1) thru (S16.24), (S17.1) thru (S17.32), and (S18) thru (S24)

are distributed across 81 processor units. On our test machine, if one allows a max-

imum time to complete of 9.375 days running in this modest cloud configuration,

the maximum number of features which can be attempted is 100 features.

Extreme Accuracy in Symbolic Regression 27

The extreme algorithm can also be delivered, in a single thread deployment, on

a laptop for scientists who want to run nonlinear regression problems in the back-

ground as they perform their normal tasks. In a single thread deployment, searches

(S0) thru (S24) are packaged together as a unit and run in a single process on the

laptop. On our test machine, if one allows a maximum time to complete of 3.25

days running in the background, the maximum number of features which can be at-

tempted is 25 features. If one allows a maximum time to complete of 12.5 days run-

ning in the background, the maximum number of features which can be attempted

is 35 features.

The extreme algorithm can also be delivered, as a multi-thread deployment, on

a workstation for scientists who want to run nonlinear regression problems in their

laboratory. In a multi-thread deployment, searches (S0-S3), (S4-S15), (S16-S17),

and (S18-S24) are packaged together as four units. Each unit is run on a single

thread on the workstation and assigned to a single core cpu. On our test machine, if

one allows a maximum time to complete of 13.02 days running on the workstation,

the maximum number of features which can be attempted is 50 features.

The extreme algorithm can also be delivered, on a large cloud deployment, for

scientists who want to run very large nonlinear regression problems and who have

a large number of computation nodes. In a large cloud deployment, searches (S0)

thru (S15), (S16.1) thru (S16.24), and (S18) thru (S24) are distributed across 49

processor units. Searches (S17.1) thru (S17.32) are further broken out, at run time,

into 32 x M separate searches where ‖V‖ = M. This is done by expanding each of

the searches (S17.1) thru (S17.32) into M separate searches by setting the variable

v0 into all possible M concrete values, as shown in the examples below.

• (S17.1.1) search regress((x0 +v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.1.2) search regress((x1 +v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.1.3) search regress((x2 +v1)*(v2+v3)) where island(smart,standard,10,25,4000)
• (S17.1.M) search regress((xM +v1)*(v2+v3)) where island(smart,standard,10,25,4000)

On our test machine, if one allows a maximum time to complete of 11.718

days running in this large cloud configuration, the maximum number of features

which can be attempted is 500 features, and one would require 16,049 = (49 +

(32*500)) computation nodes. Furthermore, at 500 features, the size of the search

space for which we are asserting extreme accuracy is larger than 157*(500+218)8 =

3.86E+051.

17 Conclusion

In a previous paper (Korns, 2011), significant accuracy issues were identified for

state of the art SR systems. It is now obvious that these SR accuracy issues are due

primarily to the poor surface conditions of specific subsets of the problem space.

For instance, if the problem space is exceedingly choppy with little monotonicity or

flat with the exception of a single point with fitness advantage, then no amount of

fiddling with evolutionary parameters will address the core issue.

28 Michael F. Korns

In this paper we lay the ground work for an enhanced algorithmic approach to

SR which achieves a level of extreme accuracy. This enhanced algorithm contains a

search language and an informal argument, suggesting a priori, that extreme accu-

racy will be achieved on any single isolated problem within a broad class of basic

SR problems. Furthermore, maximum resource allocations and maximum timings

are given for achieving extreme accuracy.

The new extreme accuracy algorithm introduces a hybrid view of SR in which

advanced evolutionary methods are deployed in the extremely large spaces where

serial search is impractical, and in which the intractable smaller spaces are first

identified and then attacked either serially or with mathematical treatments. All aca-

demics and SR researchers are heartily invited into this newly opened playground,

as a plethora of intellectual work awaits. Increasing SR’s demonstrable range of

extreme accuracy will require that new intractable subspaces be identified and that

new mathematical treatments be devised.

Finally, to the extent that the reasoning in this informal argument, of extreme

accuracy, gain academic and commercial acceptance, a climate of belief in SR can

be created wherein SR is increasingly seen as a “must have” tool in the scientific

arsenal.

References

Hornby GS (2006) ALPS: the age-layered population structure for reduc-

ing the problem of premature convergence. In: Keijzer M, Cattolico M,

Arnold D, Babovic V, Blum C, Bosman P, Butz MV, Coello Coello C,

Dasgupta D, Ficici SG, Foster J, Hernandez-Aguirre A, Hornby G, Lip-

son H, McMinn P, Moore J, Raidl G, Rothlauf F, Ryan C, Thierens

D (eds) GECCO 2006: Proceedings of the 8th annual conference on

Genetic and evolutionary computation, ACM Press, Seattle, Washing-

ton, USA, vol 1, pp 815–822, DOI doi:10.1145/1143997.1144142, URL

http://www.cs.bham.ac.uk/ wbl/biblio/gecco2006/docs/p815.pdf

Korns MF (2010) Abstract expression grammar symbolic regression. In: Riolo R,

McConaghy T, Vladislavleva E (eds) Genetic Programming Theory and Prac-

tice VIII, Genetic and Evolutionary Computation, vol 8, Springer, Ann Arbor,

USA, chap 7, pp 109–128, URL http://www.springer.com/computer/ai/book/978-

1-4419-7746-5

Korns MF (2011) Accuracy in symbolic regression. In: Riolo R, Vladislavleva E,

Moore JH (eds) Genetic Programming Theory and Practice IX, Genetic and Evo-

lutionary Computation, Springer, Ann Arbor, USA, chap 8, pp 129–151, DOI

doi:10.1007/978-1-4614-1770-5-8

Korns MF (2012) Genetic Programming Theory and Practice X, Springer, chap A

Baseline Symbolic Regression Algorithm

Kotanchek M, Smits G, Vladislavleva E (2007) Trustable symbolic regression mod-

els: using ensembles, interval arithmetic and pareto fronts to develop robust and

Extreme Accuracy in Symbolic Regression 29

trust-aware models. In: Riolo RL, Soule T, Worzel B (eds) Genetic Programming

Theory and Practice V, Genetic and Evolutionary Computation, Springer, Ann

Arbor, chap 12, pp 201–220, DOI doi:10.1007/978-0-387-76308-8-12

Koza JR (1992) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA

McConaghy T (2011) FFX: Fast, scalable, deterministic symbolic regression tech-

nology. In: Riolo R, Vladislavleva E, Moore JH (eds) Genetic Programming The-

ory and Practice IX, Genetic and Evolutionary Computation, Springer, Ann Ar-

bor, USA, chap 13, pp 235–260, DOI doi:10.1007/978-1-4614-1770-5-13

Nelder J, Wedderburn R (1972) Generalized linear models. Journal of the Royal

Statistical Society Series A:135:370–384

Schmidt M, Lipson H (2010) Age-fitness pareto optimization. In: Riolo R, Mc-

Conaghy T, Vladislavleva E (eds) Genetic Programming Theory and Prac-

tice VIII, Genetic and Evolutionary Computation, vol 8, Springer, Ann Arbor,

USA, chap 8, pp 129–146, URL http://www.springer.com/computer/ai/book/978-

1-4419-7746-5

Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic regression. In:

O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) Genetic Programming Theory and

Practice II, Springer, Ann Arbor, chap 17, pp 283–299, DOI doi:10.1007/0-387-

23254-0-17

Index

abstract expression grammars, 1

genetic algorithms, 1

grammar template genetic programming, 1

Korns Michael F., 1

particle swarm, 1

symbolic regression, 1

31

